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Background

The goal of this project is to develop a wave-equation based inversion method for
extracting the ocean medium from the sound transmission data collected over a tomogra-
phy acquisition system consisting of two vertical arrays, one source array and one receiver
array, suspended in ocean at a fixed distance apart. Ocean acoustical tomography has
been an ongoing interest to the underwater acoustics community. Part of the interests
stem from the need of knowing the “ocean lens” for doing phase coherent processing on

navy-interest acoustic signals.

Wave-equation based inversion methods, as opposed to travel-time based inversion

methods, are of interests since diffraction effects are inevitably important for achieving
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resolution imaging at a scale comparable to wavelength. However, traditional diffraction-
type inversion methods (known as diffraction tomography) specialize mainly in imaging
small scatterers buried in homogeneous backgrounds. For an ocean acoustics environment
characterized by strong depth-dependence, such methods based on homogeneous back-

ground may not be most appropriate

Method of Attack

Our method of attack, therefore, caters specifically to the strong depth-dependence
of the problem. It does so by building inversion on top of a depth-dependent background,
as opposed to on a homogeneous background in traditional diffraction tomography meth-
ods. The medium in between the two arrays is assumed to be having a dominant depth-
dependence and a variation (which has both lateral and depth dependence) on top of that
background. Our task is to image, from the array transmission data, the depth-dependent

background itself as well as the deviation on top of the background.

The method relies on the idea that, in a purely depth-dépendent medium, the wave
propagation problem is separable in terms of eigenstates (or modes) defined with respect
to the medium depth dependence. The modes serve two purposes: they separate the
wave equation and they form a set of orthogonal basis functions which we can use for
expanding data collected over vertical arrays. In terms of the vertical mode framework,
then, the deviation on top of the background causes mode-mode scatterings. Therefore,
in inversion, we can decompose data into mode-mode scattering amplitudes, and then use
the mode-mode scattering amplitudes to extract the deviation.

This method of medium extraction simplifies the inversion problem. As illustrated in

Figure 1, since each mode travels sideways with a distinctive horizontal wave number, a
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Figure 1 The medium v(p',q') (where p' and ¢' are the horizontal and vertical wavenum-
bers, respectively) is probed with N in-modes, each of which is scattered into N out-modes.
The scattering amplitude of one mode into another mode samples v(p', ¢') at a particular
P’ (the difference between the p of the two modes) and a collection of ¢'. Inversion is done
by grouping data of the same p' and solving for v(p',q'), at that p', as a function of ¢' -
namely, a 1-D inversion with respect to ¢'. : '

mode-mode scattering amplitude samples a particular horizontal Fourier component (given
by the difference of the horizontal wave numbers of the two modes) of the deviation. The
key, then, is that, by collecting mode-mode scattering amplitudes which sample the same
horizontal Fourier component, we can invert for the vertical Fourier components of the
deviation for that particular horizontal Fourier component alone. Effectively, the original
2-D medium inversion is reduced to a set of independent 1-D inversions (one 1-D inversion

for a particular horizontal Fourier component). This is a remarkable simplification.

The significance of the method is illustrated in Figure 2. Inversion in general involves a
mapping from a data space D to a model space M. The two spaces, in general, are large and

poorly connected (i.e. the matrix linking M to D is large and ill-conditioned and inversion
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Figure 2 Data space D and model space M. (a) Full-space to full-space connection. (b)
Sub-space to sub-space connection.

of that matrix is difficult and unstable). However, in the present method, both spaces are
partitioned into sub-regions, each region characterized by a particular horizontal Fourier
component of the medium, and only sub-regions of the same horizontal Fourier component
are connected. The mapping from a sub-region in D to the corresponding sub-region in

M is only a 1-D inverse problem.

The method was originally introduced by the PI [1] and was later developed by an

Exxon scientist [2].
Results

The problem consists of two major steps. The first step is to extract, from data, a
most appropriate depth-dependent background. The second step is to extract, as described

above, from data and the recovered depth-dependent background, mode-mode scattering
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amplitudes and then the variation on top of the background.

Let the source array and the receiver array each be consisting of N elements. The
data, for each frequency component, can then be expressed as an N X N matrix, which
we shall call the data matrix. Specifically, we shall call it the depth-domain data matrix,

with the first column corresponding to the received data at the N receivers from the first

source, etc.

Recover the depth-dependent background

To facilitate discussion, first we consider how to recover the depth dependence in
a purely depth-dependent medium. In such a medium, a vertical mode (defined by the
medium depth dependence) generated by the source array would arrive at the receiver
array as the same mode. That is, the data matrix, which is non-diagonal in the depth-
domain, would be purely diagonal in the vertical mode domain. Thus, by a numerical
diagonalization of the N x N data matrix from the original depth-domain, one can recover
from the diagonalizing matrix N vertical eigenmodes and from the resulting diagonal values
the corresponding horizontal wavenumbers of the N modes. Each one of the eigenmode,
together with its horizontal wavenumber, can then be used to generate the vertical velocity

profile from the modal equation defining the eigenmodes.

Actually, the problem is a bit more complicated since, due to the finite array length
and finite transducer spacings, the recovered eigenmodes from the diagonalization of the
data matrix are non-exact. Further, at where eigenmodes vanish (nodal points), the modal
equation defining the eigenmodes carries no information about the velocity. The rescue
comes from data redundancy. An N x N matrix can generate N modes. With Ny frequency
components, therefore, the data redundancy in determining the vertical dependence is
N x Ny fold. The nodal points are no longer a problem since different modes vanish at

different points. By demanding that the modal equation, in which the vertical dependence




is the unknown, are satisfied by all the non-exact modes as much as possible - basically a

least square problem - one can solve for an optimum vertical velocity profile.

Another complication is that the medium is not purely depth-dependent. As such,
the data matrix is only nearly diagonal in the eigenmode domain. Thus, a numerical
diagonalization of the data matrix from the depth domain yield non-exact eigenmodes.

Again, data redundancy is the solution to this problem of non-exact eigenmodes.

The first example is illustrated in Figure 3. Two arrays, 90m in length, each con-
sisting of 49 transducers with a spacing of 1.875m between each two transducers, are
spaced 33.75m apart in a three layer medium (with velocities 1800m/sec, 2100m/sec and
2400m/sec). The figure shows simulated data using the finite-difference time-marching
method (with absorbing boundary conditions), along with the time variation and the fre-
quency spectrum of the sources. Figure 4 shows, as an illustration, for the frequency com-
ponent 404.36H z (corresponding to a wavelength about 5.2m for a velocity of 2100m/sec),
the first three modes and the recovered vertical velocity profiles using each mode individ-
ually. Results show strong eigenmode oscillations in the lower velocity region and, corre-
spondingly, as expected, poor results in the recovered velocity profile since, as explained,
the nodal points (where eigenmodes vanish) do not carry information about the velocity.
Notice that higher modes produce worse results because of the higher number of nodal
points. These results illustrate the importance of using data redundancy. Figure 5 shows
the obtained velocity profile using 15 modes (the first three modes at five frequencies rang-
ing from 316.46Hz to 386.78 Hz at 17.58H z interval) individually and collectively. The
obtained velocity profile using 15 modes collectively are all within 20m/sec for the three

layers.

The second exé.mple, as illustrated in Figure 6, shows the study carried out for the
same three layer medium, but now with a square-shaped scatterer embedded in the second

layer. The reproduced velocity profile obtained using the same set of data (namely, the




first three modes from five frequency components as given above) agree with the lateral
average of the actual velocity profile very well. This example illustrate that this algorithm

is capable of producing perceptible difference in the background due to weak variations.

Recover the variation on top of the background

As a first example, we try to image the square-shaped scatterer shown in Figure 6

using the recovered background shown there. However, at this time, this workis still in

progress.

Conclusions

A method for diffraction tomography in layered medium has been proposed. The first
part of the algorithm, namely recovering the layered background, has been illustrated. The

second part, namely recovering the variation on top of the background, is still in progress.

At this initial stage, in order to understand the method, we have studied using simple
but unrealistic examples. After this initial stage, we hope to be able to extend the study

to more realistic ocean acoustic situations.
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Figure 3 A three layer model and simulated data.
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Figure 4 Left panel shows the recovered eigenmode and the right panel shows the cor-
responding inverse velocity profile Sdashed line), compared with the actual velocity profile

(e)

(solid line). (a) The first mode. (b) The second mode. (c) The third mode.
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Figure 5 The top diagram shows the inverse velocity profile using 15 modes individually.
The bottom diagram shows the inverse velocity profile using the same 15 modes collectively.
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Figure 6 A three layer model embedded with a scatterer. (a) The model geometry. (b)
The received signal at 49 receivers from the center source. (c) The inverse velocity profile

(dashed line) compared with the actual velocity profile (solid line).
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